Sheffield Autonomous Racing Car (ShARC)

By Andrew, David and Hamish

Aims and objectives

- Implement a computer-vision based self-driving car
- Comply with key NXP rules:
 - Only NXP processors used where possible
 - Completely autonomous
 - Complies with battery restrictions
 - Primary navigation source must be a camera
 - Recognizes finish line
- Car competes in a time trial as well as challenges for additional points
 - Obstacle detection
 - Speed zones
 - Emergency stop

Car Hardware - Andrew

- Four-wheel drive chassis purchased and assembled
- Motor requirements:
 - Max acceleration ~9 m/s/s
 - Max speed ~6 m/s
 - 0.06 Nm at 13000 RPM
- Selected motor & gearing to meet requirements brushless, sensored for low speed performance
- Li-Ion cells chosen to bypass competition rules on Li-Po
- Made UART to RS232 conversion, PWM level shifting, Bluetooth serial communication & power distribution board

Motor control -Andrew

- Control requirements:
 - Closed loop speed
 - Dynamic braking (regenerative or rheostatic)
 - Torque/current limiting
- Would be out of scope to design from scratch, objective is to win competition
- Selected Roboteq SBL1360- regenerative braking and extensive ASCII RS232 interface
- Currently interfaced with Coral Dev Board script allows remote speed control over Bluetooth

Hamish – Computer Vision

- OpenCV used
- Previously used "Hough Transform"
- Now uses:
 - Gaussian blur
 - Linear Thresholding
 - Pixel averaging

Hamish – Main Processor

- Running Linux distro (Mendel)
- Controls:
 - Servo PWM
 - Motor Driver UART
 - Wireless Terminal Bluetooth
- Little online support

David - Steering Control (Hardware)

- Trackstar TS-920:
 - Designed for 1/10 scale trucks and 4WD buggies
 - High Torque at 13.1kg.cm (@7.4V)
 - Metal geared
 - Digital over Analogue

David - Steering Control (Software)

- Averaged vs fixed look ahead method:
 - Control via PWM
 - Averaged receives a single value of the average of all the bars
 - FLA only receives the data for one bar a fixed distance ahead
- Proportional Controller
 - Pixel distance used for error calculation
 - Error range mapped to servo response
 - Green/Yellow vertical lines represent track lines when centred
 - Desired midpoint shown at the centre

Progress compared to plan

- Currently one week in front of schedule – testing started this week
- All preliminary tasks completed
- Car fully operational with prototype testing platform
- Car able to follow a simple track

Task	4	5	6	7	8	9	10	11	12	13	14
[ALL] Complete PID	*										
[ALL] Research/order processors, camera, chassis, and wheels											
[ALL] Configure compute module and camera, assemble chassis											
[AH, DC] order servos, motor & controller based on chassis & wheel grip investigation											
[HS] Create initial line detection algorithm											
[DC] Implementing initial steering control											
[AH] Implementing initial speed control											
[ALL] Interfacing processor, speed controller, servos & adding to car											
[ALL] Interim presentation								*			
[ALL] Testing car and refinement											

Future Work

- Motor Control Andrew
 - Speed algorithm based on line curvature
 - Tune PID
- Computer Vision Hamish
 - Improve line averaging
 - Develop neural network approach
 - Reduce instruction loop delay
- Steering Control David
 - Reduce over and under correction

Milestones

- Different NXP challenges:
 - Variable speed driving
 - Autonomous track navigation
 - Speed zone detection
 - Emergancy Braking
 - Object detection

Demo

<u> https://1drv.ms/v/s!Alk-Kulpr33kgbtxgrCQoJNWZxYPgA</u>