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Abstract—In this paper, we propose a novel method of com-
bining RGB-D data for saliency prediction based on generative
adversarial networks (GANs). Our method allows the same
generator neural network to combine depth and RGB data before
saliency prediction compared to previous state of the art systems
based on depth and RGB combination post saliency prediction.
We also attempt to qualify the added benefit of depth in saliency
prediction. Our neural network is trained and tested on the
Olesova eye tracking dataset and compared with classic and
state of the art saliency prediction models along with the NLPR
dataset.

Index Terms—Generative Adversarial Networks,/ Saliency de-
tection, RGB-Depth.

I. INTRODUCTION

ALIENCY prediction algorithms attempt to quantify how

salient or eye-catching an image or video is similar to how
a human would [1]. Saliency is, therefore, a large role both in
the computing field but also the psychological and biomedical
world [2]. More recently the saliency field has expanded and
focused on detecting objects compared to processing large
busy scenes [3].

Saliency has always been a topic for research, but as
technology has improved, researchers have been able to im-
plement such systems leading to more discoveries historically
and recently such as overt and covert attention along with
the respective computing methods top-down and bottom-up
processing [4]. Overt (top-down) meaning that the eye is selec-
tively chosen to look at an object such as while driving a traffic
light would be overtly seen. On the other hand, covert (bottom-
up) vision is what is passively eye-catching such as being the
passenger in a car traffic lights may not be stimulating but a
bright green building may be. Recently, Microsoft released the
Xbox Kinect which has allowed researchers access to 3D data
for RGB-D saliency [5]. As humans, we see can sense depth
due to having two eyes and with this 3D data, we can start to
create algorithms that act more human-like [6].

As this technology is growing so are the applications.
Saliency models are being used in many image processing
tools such as: automatic cropping [7] [8], image thumbnails
[9] and image summarizing [10]. On top of image processing
tools, saliency is being used to improve computer vision
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software to improve CNN (Convolutional Neural Networks)
speed and accuracy [11], [12], [13].

Saliency as a whole has unlimited applications in comput-
ing, as models improve these systems will likely move into
our everyday lives. Some likely situations could be inspection
robots or cameras designed to detect unnatural items on streets
or in buildings. These systems could also be reverse engineered
to design naturally eye-catching advertisements or products.
These could also be used in health-care to diagnose patients
in collaboration with eye-tracking systems to sense unnatural
vision [14] [15].

What is holding back these technologies is the huge amounts
of data to be processed (around 10® — 10 bits per second for
the brain [16]). This means neural networks struggle with our
current computing power relying on convolution to cut down
data [17]. A common problem for quantifying model efficiency
is that a lack of challenging datasets exist, generally proposing
of a single salient object near the centre of an image with the
most common being [18] and [3].

With all of this in mind this paper has the following aims:

1) Propose a new saliency prediction algorithm using gen-
erative adversarial networks trained on RGB-D eye-
tracking data comparing the effect of training with both
RGB and depth available simultaneously.

2) Compare different saliency models using RGB, Depth
and RGB-D models to qualify the effect of depth on
saliency prediction.

A. Economic, Legal, Social, Ethical and Environmental Con-
text

As this system could be developed and implemented in
such a huge amount of areas it is hard to pinpoint exact
worries. Saliency is already being developed in Al systems
and with technology increasing so rapidly, saliency prediction
algorithms could phase out low skilled human jobs that rely
solely on vision. As any system that would run a saliency
prediction algorithm must use electricity it is, therefore,
contributing to global warming given the current methods
of generation, however, these standalone systems could be
completely green if used in conjunction with solar or wind
technology. Currently, this technology does not have the ability
to take over from design jobs, but is used to speed up
usually time-consuming tasks such as cropping [7] and image
summarising [10]. Overall I do not believe developing these
systems for generally aiding time-consuming tasks is harmful
but implementing these systems in industry where jobs may
be taken or in throwaway technologies is not only harmful to
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the environment and families but also the local economy by
reducing cash flow.

II. RELATED WORK
A. Saliency Models

Saliency prediction algorithms can generally be broken
down into two sections: Bottom-up and top-down methods
[4].

1) bottom up: Bottom-up approaches are based around
covert sight and are based around how we naturally look at
scenes. The basis of the majority of bottom-up saliency models
are three feature maps: intensity, colour and orientation [19]
[20] [21] [22] [23]. Derived from psychological behavioural
analysis [24] [2]. Bottom-up approaches are generally good
at detecting salient points (high precision) but lead to blurry
maps with low recall (high false positive rate) [22]. Bottom-up
is comprised of two more categories: local and global methods.

o Local methodologies determine region wise saliency
based on surrounding region contrast ¢.e. the edge of an
object. Regions may be classed as pixels or features or
convolved maps etc. [19] [3] [25]. Local methodologies
are still being developed as state of the art [26].

« Global methodologies determine contrast based on dif-
ference compared to the rest of the image such as a
bright red post box in a town. Some methods include
colour histograms to compare contrast [22].

2) top-down: Top-down approaches are designed for overt
sight and require pre-determined knowledge for the application
such as driving. Top-down methodologies depend on object-
ness, object proposal [27] [28] and object detection to detect
specific items and quantify objects [29] [30] [31]. A top-down
methods have been trained for many different applications
such as facial recognition [32] and people/car recognition [33].

B. Convolutional Neural Networks (CNN)

Convolutional neural networks were first used to classify
handwriting [34]. CNNs have been used for a variety of tasks
especially image classification [17] and object detection [35].
CNNss are currently outperforming classical models [36] [37]
[38] [39] with most being trained on the ImageNet dataset
[17] which has been proposed to be applicable to be useful
for generic tasks [40].

C. Depth combination models

All current RGB-D saliency methods work by comput-
ing RGB saliency and Depth saliency separately and then
combining the two, this is split into three methods: Depth-
weighting, Depth-Pooling and Learning-Based. Our method
proposes a combination method determined by the saliency
neural network.

1) Depth-Weighting: Depth-weighted models use feature
map fusion to improve the accuracy of saliency prediction
[41]. Working by taking into account depth while calculating
RGB saliency. The difference between 2D and 3D data has
been analysed to determine the saliency improvement using
depth data and has been shown to increase saliency by around
6-7% [6]. Methods of weighing depth into saliency models are
still being developed to improve accuracy [42].

(a) Generator

(b) Discriminator

Fig. 1. Simplified generator and discriminator neural networks showing
convolutional compression, expansion and classification respectively. The
generator does not show the U-Net style encoder-decoder with skipped
connections [52].

2) Depth-Pooling/Saliency: Depth pooling models work by
calculating and combining RGB and depth salience maps
together to make a joint RGBD map [43]. One of the most
straightforward methods is by multiplying depth saliency
maps with RGB saliency maps pixel-wise [44] [45]. Different
methods of integrating depth have been proposed based off
depth saliency maps taught from synthetic stimuli [46] [47].
Basic RGB-D fusion frameworks have been developed and are
widely used in models [48].

3) Learning-Based/mono-vision: Learning based methods
are saliency prediction algorithms that calculate the depth
map using machine learning from an RGB image. These
methods allow for depth saliency without needing stereo-
vision equipment or data [49]. Support vector machines (SVM)
have been successfully used to classify RGB data into depth
maps [50].

III. PROPOSED APPROACH

In this paper, we propose a new saliency model using RGB
and Depth data using a generative adversarial network trained
on eye-tracking data in a busy environment using an Xbox
Kinect depth camera [51].

A. GAN

The GAN used was that of P. Isola et al [53]. The generator
that reads the RGB and depth inputs is a U-Net style network
proposed by O. Ronneberger et al where certain feature maps
skip some convolutional steps and are passed through the
system [52]. A simplified version of the GAN can be seen
in Figure: la. The Discriminator that classifies the real and
fake data is based on the work in C. Li et al [54], a simplified
version of this CNN can be seen in Figure: 1b. The GAN
was trained on half of the dataset for 100 epochs to train the
generator and discriminator. The larger the epochs the more
likely the model is to succeed but takes much longer to run,
100 was chosen due to a tradeoff of these two and pushed
time limits on my hardware.
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B. Testing

The second half of the dataset is used to test the GANs
ability of eye-tracking prediction, which makes sure the CNN
hasn’t simply memorised the dataset as it has never seen
these entries. This data is also used in conjunction with a
mix of classical and state of the art methods to classify the
efficiency [55] [19] [56] [57]. As this dataset provides depth
as a grayscale map instead of a matrix the depth data had
to be transformed into distances for other models. This was
done by calculating the max length of the room shown in the
dataset (8.99m) and finding the grayscale value at that point
(255). This lead to the equation x * 35.25 = y to calculate the
distance in mm. The common dataset proposed by H. Peng et
al was also used to compare the model’s ability to detect salient
objects [18]. Multiple methods of classification have been
used, the main two being F-Measure and the receiver operating
characteristic curve (ROC). The F-Measure is defined as the
harmonic mean of precision and recall (where precision and
recall are defined in Equation 1 and 2 respectively) as shown
in Equation: 3. The receiver operating characteristic (ROC)
curve is created by varying the cutoff threshold of the predicted
saliency map and comparing with the ground truth map and
then plotting the true positive rate vs false positive rate. With
a large dataset, all ROC curves are calculated and averaged to
get the plotted ROC curves shown.
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IV. RESULTS & EVALUATION

The two main objectives of this paper are to evaluate the
performance of our model compared to other state of the art
and classical models, but also to research the effect of depth
data in saliency prediction and the effect of training a neural
network with both RGB and Depth compared with combining
RGB and Depth maps post detection.

A. Saliency model comparison

As we have no specific goal (i.e. high precision or recall
exclusively) the main measure of an algorithms effectiveness
is represented by the F-Measure. All results can be seen in
Table: VI and Table: V for the Olesova and NLPR datasets
respectively with the best results (based on F-Measure) for
each model shown in Table: I and Table: II.

1) Olesova: The Olesova dataset contained over 1000 im-
ages from a RGB-D video with corresponding eye-tracking
data from participants; this means salient information was
directly taken from eye movement and couldn’t be easily
forged. From Table: I we can see that our model is much
higher than the rest in all measures. The precision of our
model is around 70% which is higher than the rest but not
by a huge amount, as precision is the measure of how much

TABLE I
BEST OLESOVA RESULTS
Model F - Measure  Precision Recall ~AUC
Ours(RGB) 0.7248 0.6928 0.7598  0.9227
GBVS(RGB) 0.3163 0.4353 0.2484  0.7052
Itti(RGB) 0.3097 0.4591 0.2336  0.7380
LMH 0.1878 0.6529 0.1096  0.7646

selected is relevant this shows the majority of what our system
has defined as salient is correct. However when we look at
recall, our system has by far taken the lead, this means our
system has selected the majority of what is defined as salient
compared to the other models. This means the other models
are looking more for small and specific salient areas compared
to our model which rates every area on its saliency. The other
models have a much higher precision than recall meaning the
chosen salient region is generally correct but the majority of
the rest of the frame is missed. This is also shown in Figure
3 where all other models seem to plateau at around 30% false
positive rate with a true positive rate of 70% whereas ours
is at around 95%. Overall it seems fair to say our model has
beaten state of the art systems with this style of data with an
increase of 21% in AUC and 129% in F-Measure.

2) NLPR: Unlike the Olesova dataset NLPR [18] contains
1000 images (RGB and depth) with ground truth maps com-
posed of singular salient objects. These points were calculated
by humans selecting objects by hand. NLPR is also based on
singular images and not constant video compared to Olesova.
If we look at Table :II we can see that ours is now around equal
to Itti and LMH methods in terms of F-Measure. Looking at
the precision and recall we can see that this time our precision
is the lowest of all methods meaning that our system has
predicted that much more of the image is salient than the
ground truth map shows, this is likely due to the fact that
our method rates the entire scene and not a single object.
This is reinforced by looking at the recall as our system has
the highest recall of all, which indicates ours had correctly
identified the most relevant elements. We can generally tell
that our system has identified much more of the scene as being
salient which agrees with all other information. The graph in
Figure: 4 shows all models ROC, we can see that most systems
are similar in performance, but ours is lowest with a low false
positive rate pointing to a system that fails to identify the
majority of the main salient point, the true positive rate then
rises quickly above other models. This means that our system
identifies the whole salient object fully but classes it as a less
salient point. Looking at Figure: 2 our method stands out as
classifying more of the scene as salient compared to all other
methods especially GP and LMH. These images re-enforce the
previously made assumptions of over-classifying and others
under-classifying (especially LMH).

B. Depth comparison

The Olesova results can be used as a method of comparing
how well our neural network has learned the saliency from
the eye-tracking data. A table of the combination methods can
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(a) RGB (b) Depth (c) Ground (d) GP

(e) Itti (f) LMH

() GBVS

(h) Ours

Fig. 2. A comparison of salience prediction algorithms on the NLPR [18] database. (a) RGB image from the dataset. (b) Depth image from the dataset
origianally provided as a matrix. (c) Ground truth supplied from the dataset. (d) Saliency prediction using Global Priors [55]. (e) Saliency prediction using Itti
and Kochs algorithm [19] from the GBVS matlab library [57]. (f) Saliency prediction using Low, Mid and High-level(LMH) stage saliency [56] (g) Saliency
prediction using Graph-Based Visual Saliency (GBVS) [57]. (h) Our predicted saliency map
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Fig. 3. Olesova Receiver Operating Characteristics

TABLE 11
BEST NLPR RESULTS
Model F - Measure  Precision Recall AUC
GP 0.5607 0.8265 0.4243  0.8668
GBVS (RGB) 0.5113 0.5318 0.4924  0.8927
Itti (RGB) 0.4221 0.4413 0.4045  0.8597
Ours (*) 0.3950 0.3222 0.5103  0.7731
LMH 0.3208 0.6842 0.2095  0.7921

be seen in Table:IIl, the RGBDepth combination proposed is
second in terms of F-Measure after plain RGB. Initially, this
seems dooming for the model as it has dragged the accuracy
down, unfortunately, due to the pre-designed nature of the
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Ours
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False Positive Rate

Fig. 4. NLPR Receiver Operating Characteristics

TABLE III
COMPARISON OF DEPTH COMBINATION METHODS ON THE OLESOVA
DATASET
Combinational method  F - Measure  Precision  Recall AUC
RGB 0.7248 0.6928 0.7598  0.9227
RGBDepth 0.6866 0.6487 0.7292  0.8723
RGB+Depth 0.6121 0.5386 0.7087  0.8674
RGB*Depth 0.4144 0.7816 0.2819  0.8227
Depth 0.4131 0.3566 0.4907 0.6821

system both the RGB and Depth maps had to be scaled down
in half to fit both into the model. It is had to quantify the loss
of saliency by halving the resolution and is certainly an area
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Fig. 5. All methods of combination on our proposed system compared on
the Olesova dataset.

TABLE IV
COMPARISON OF DEPTH COMBINATION METHODS ON THE NLPR DATASET

Combinational method F - Measure  Precision Recall AUC

RGB*D 0.3950 0.3222 0.5103  0.7731
RGB 0.3876 0.3205 0.4904  0.7469
Depth 0.2687 0.1858 0.4848  0.6836
RGB+D 0.2587 0.4436 0.1825 0.7684
RGBDepth 0.2460 0.1884 0.3540  0.6312
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Fig. 6. All methods of combination on our proposed system compared on
the NLPR dataset.

for improvement for comparison measures. We can, however,
stipulate that depth data is not as important as RGB in saliency
detection as both methods had access to the same amount of
pixels where the RGB map only had RGB data compared to
half and half RGB and depth.

Looking at other results, however, shows that our method
of neural network combination of RGB-D has outperformed
linear and multiplication based combination methods despite
having access to half of the data available to both other
methods. The recall is the highest of all combination methods
showing that the majority of salient regions were detected,
whereas the precision is not the highest of all methods meaning
a few regions were over-estimated. The most interesting entry
is the multiplication combination as it has the largest precision
yet lowest recall meaning that little regions were selected
but these regions were generally correct, theoretically this
means that this system will lead to smaller more accurate

salient regions like that of the NLPR dataset and can theorise
this is why multiplication is best for the NLPR dataset as
shown in Table: IV. Comparing this with other models, both
Itti and GBVS methods have multiplication based being the
least salient due to a tiny recall value meaning tiny amounts
of salient regions are detected. This leads to the conclusion
that these methods need more complex joining methods to
avoid relying too much on depth. Overall in every method
(excluding ours due to a poor testing method) depth has
reduced saliency accuracy, this is likely due to always treating
RGB and Depth equally and not employing any sophisticated
weighting methods. To improve this, methods of weighting
a scene based on RGB and depth contrast should be used
to determine what the driving factor is. This would allow a
system to treat images such as those in row 2 and 4 of Figure:2
differently due to no depth contrast in row 4 and one with high
depth contrast in row 2, the only models able to do this, shown
in this paper, are ours and GP.

Looking at the results from the NLPR dataset in Figure 6
and Table:IV the previously worst of the combination methods
is now the most accurate method of all. Methods with the
highest ratings in the self-test, showing low loss of the neural
data supplied, are getting low scores in the NLPR dataset,
This points to the two datasets being very different in types
of saliency measured and a generally unfair test.

V. DISCUSSION

The results have shown varying levels of efficiency as
testing our system on data similar to that of the training
has lead to high precision and low losses meaning a great
understanding and learning of the saliency employed. However
when testing on generalised data precision dropped drastically.
This leads to the thought of an unfair test, and this system
needs to be changed. There are multiple methods of change:

o Change the training data for the neural network, the
neural network could be trained on the NLPR or similar
dataset and then trained on a similar set. This would
change the output of the GAN to something more similar
to that seen in Figure:2:c which may be desirable or
undesirable based on what the system is to be used for.

« Change the testing data, this means changing the norm
of testing on the NLPR dataset and instead testing on
another eye-tracking dataset, this would keep the output
of the neural network in the same style but would require
using a non-standard testing set.

Each of these has advantages and disadvantages but ultimately
depend on the requirements of implementation and usage
which is not in the scope of this document. Due to the nature
of our GAN, our neural network has no ability to compare
preceding frames for temporal analysis and therefore may not
be the greatest method for video analysis, however the neural
network may learn to understand blur as movement and can
account for this in saliency prediction for video analysis to
replace the need for cross-frame analysis. In the future, it
may be possible to add frame difference maps as feature maps
into the U-Net generator to allow for such movement analysis.
Another point raised is the inability to correctly compare the
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results due to differences in input resolution caused by the
GAN system used. Ideally the GAN would have been designed
specifically for this purpose with the ability to take singular
and multiple images together. This would rely upon a non-
square convolution or maxPooling in the neural network which
would minimise the difference between models. Alternatively,
the GAN could be trained with the RGB and depth downsized
as they appear in the joined maps. To improve the models
learning accuracy, which doesn’t seem proportionally linked
to NLPR accuracy, a larger quantity of epochs, around 200,
should be employed. This should greatly reduce the loss of
the GAN but will require either more computing power or
more time. A GPU build of tensorflow should vastly reduce
time by around 90% in conjunction with a high performance
cluster (HPC) that is GPU based could run the majority of
these tests in a day. Depth comparison has unfortunately been
hard to achieve in this paper due to floored testing methods,
however, it may be concluded that depth data has no ability
to hurt saliency detection, as it is simply more data, unless
bad quality joining methods are used. Due to this, more future
work is key to compare more complex combinational methods
Compared to our initial aims and objectives:

1) A new method of saliency has been proposed using
generative adversarial networks but also with a new
combination strategy of allowing the GAN to combine
the RGB and depth data. Future work has been proposed
as how to improve this network including re-writing the
neural network to accept multiple images/resolutions.

2) A comparison of our method and other depth combi-
nation methods has been made with suggestions for
improvements in future work. The main of these sug-
gestions is to compare with more complex combination
methods that weight depth and RGB separately before
combination.

VI. CONCLUSION

In this paper, we proposed a novel method of 3D saliency
prediction that compares both RGB and depth information
simultaneously. This is to improve saliency prediction for full
scene analysis which is appropriate for applications such as
scene compression to reduce file size whilst keeping salient
objects at higher resolutions. Our method removes the need
for a post saliency combination, beats simple combination
methods in GAN accuracy and simplifies the system diagram.
Future work has been proposed for more object-based saliency
and fairer comparison and testing.

APPENDIX

TABLE V
NLPR RESULTS

Model F-Measure  Precision  Recall AUC
GP 0.5607 0.8265 0.4243  0.8668
LMH 0.3208 0.6842 0.2095 0.7921
Itti and Koch
RGB 0.4221 0.4413 0.4045  0.8597
Depth 0.3163 0.3755 0.2732  0.8248
RGB+D 0.3693 0.4632 0.3070  0.8756
RGB*D 0.1098 0.3977 0.0637  0.8630
GBVS
RGB 0.5113 0.5318 0.4924  0.8927
Depth 0.2519 0.3635 0.1927 0.8212
RGB+D 0.3550 0.4829 0.2806  0.8893
RGB*D 0.0969 0.4028 0.0550  0.8689
Ours
RGB 0.3876 0.3205 0.4904  0.7469
Depth 0.2687 0.1858 0.4848  0.6836
RGBDepth 0.2460 0.1884 0.3540 0.6312
RGB+D 0.2587 0.4436 0.1825 0.7684
RGB*D 0.3950 0.3222 0.5103  0.7731
TABLE VI

OLESOVA RESULTS
Model F - Measure  Precision  Recall AUC
LMH 0.1878 0.6529 0.1096  0.7646
Itti and Koch
RGB 0.3097 0.4591 0.2336  0.7380
Depth 0.1233 0.3322 0.0757 0.6914
RGB+D 0.1776 0.3930 0.1147  0.7288
RGB*D 0.0220 0.2762 0.0115  0.7129
GBVS
RGB 0.3163 0.4353 0.2484  0.7052
Depth 0.1792 0.4127 0.1145  0.6691
RGB+D 0.2362 0.4544 0.1596  0.7013
RGB*D 0.0353 3824 0.0185  0.6864
P2P
RGB 0.7248 0.6928 0.7598  0.9227
Depth 0.4131 0.3566 0.4907  0.6821
RGBDepth 0.6866 0.6487 0.7292  0.8723
RGB+D 0.6121 0.5386 0.7087  0.8674
RGB*D 0.4144 0.7816 0.2819  0.8227
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